Матлаб одномерные массивы. Иллюстрированный самоучитель по MatLab. Элементарные математические функции

Урок №13.

Многомерные массивы

    Понятие о многомерных массивах

    Применение оператора «:» в многомерных массивах

    Доступ к отдельному элементу многомерного массива

    Удаление размерности в многомерном массиве

    Создание страниц, заполненных константами и случайными числами

    Объединение массивов

    Вычисление числа размерностей массива и определение размера размерностей

    Перестановки размерностей массивов

    Сдвиг размерностей массивов

    Удаление единичных размерностей

В этом уроке мы коснемся вопросов, связанных с более сложными типами данных, к которым относятся многомерные массивы.

Понятие о многомерных массивах

В MATLAB двумерный массив является частным случаем многомерного массива. Многомерные массивы характеризуются размерностью более двух. Таким массивам можно дать наглядную интерпретацию. Так, матрицу (двумерный массив) можно записать на одном листе бумаги в виде строк и столбцов, состоящих из элементов матрицы. Тогда блокнот с такими листками можно считать трехмерным массивом, полку в шкафу с блокнотами - четырехмерным массивом, шкаф со множеством полок - пятимерным массивом и т. д. В этой книге практически нигде, кроме этого раздела, мы не будем иметь дело с массивами, размерность которых выше двух, но знать о возможностях MATLAB в части задания и применения многомерных массивов все же полезно.

В нашей литературе понятия «размер» и «размерность» массивов являются почти синонимами. Однако они имеют явно разный смысл в данной книге, как и в документации и литературе по системе MATLAB. Под размерностью массивов понимается число измерений в пространственном представлении массивов, а под размером - число строк и столбцов (mxn) в каждой размерности массива.

Применение оператора «:» в многомерных массивах

При обычном задании массивов (с помощью символа точки с запятой «;») число рядов (строк) массива получается на 1 больше, чем число символов «:», но массив остается двумерным. Оператор «:» (двоеточие) позволяет легко выполнять операции по увеличению размерности массивов. Приведем пример формирования трехмерного массива путем добавления новой страницы. Пусть у нас задан исходный двумерный массив М размером 3x3:

» М=

М =

1 2 3

4 5 6

7 8 9

Для добавления новой страницы с тем же размером можно расширить М следующим образом:

» М(:.:.2)=

M(:.:.l) =

1 2 3

4 5 6

7 8 9

М(:.:.2) =

10 11 12

13 14 15

16 17 18

Посмотрим, что теперь содержит массив М при явном его указании:

» М

М(:,:.1)=

1 2 3

4 5 6

7 8 9

М(:.:.2) =

10 11 12

13 14 15

16 17 18

Как можно заметить, числа в выражениях М(:.:, 1) и М(:,: ,2) означают номер страницы.

Доступ к отдельному элементу многомерного массива

Чтобы вызвать центральный элемент сначала первой, а затем второй страницы, надо записать следующие выражения:

» М(2.2,1)

Ans =

» МС2.2.2)

Ans =

Таким образом, в многомерных массивах используется то же правило индексации, что и в одномерных и двумерных. Произвольный элемент, например, трехмерного массива задается как М(1 .j.k), где 1 - номер строки, j - номер столбца и k - номер страницы. Этот элемент можно вывести, а можно присвоить ему заданное значение х: М(1 ,j,k)=x.

Удаление размерности в многомерном массиве

Мы уже отмечали возможность удаления отдельных столбцов присвоением им значений пустого вектора-столбца . Этот прием нетрудно распространить на страницы и вообще размерности многомерного массива. Например, первую страницу полученного массива М можно удалить следующим образом:

» М(:.:.1)=

М =

10 11 12

13 14 15

16 17 18

Нетрудно заметить, что в этом массиве осталась только вторая страница и что размерность массива уменьшилась на 1 - он стал двумерным.

Создание страниц, заполненных константами и случайными числами

Если после знака присваивания стоит численная константа, то соответствующая часть массива будет содержать элементы, содержащие данную константу. Например, создадим из массива М (см. пример выше) массив, у которого вторая страница содержит единицы:

»M(:.:..2)=1

М(:.:,1) =

10 11 12

13 14 15

16 17 18

М(:.:.2) =

1 1 1

1 1 1

1 1 1

А теперь заменим первую страницу массива на страницу с нулевыми элементами:

»M(:.:.1)=0

M(:.:.1)=

0 0 0

0 0 0

0 0 0

М(:.:,2) =

1 1 1

1 1 1

1 1 1

Использование функций ones, zeros, rand и randn

Функции ones (создание массивов с единичными элементами), zeros (создание массивов с нулевыми элементами) и rand или randn (создание массивов с элементами - случайными числами с соответственно равномерным и нормальным распределением) могут также использоваться для создания многомерных массивов. Примеры приводятся ниже:

» E=ones(3.3.2)

E(:.:.1)=

1 1 1

1 1 1

1 1 1

E(:.:,2) =

1 1 1

1 1 1

1 1 1

» Z=zeros(2,2,3) Z(:,:.l) =

Z(:.:.2) =

Z(:.:,3) =

» R=randn(3,2.2) R(:.:.l) =

1.6656-1.1465

0.1253 1.1909

0.2877 1.1892

R(:.:,2) =

0.0376-0.1867

0.3273 0.7258

0.1746 -0.5883

Эти примеры достаточно очевидны и не требуют особых комментариев. Обратите, однако, внимание на легкость задания размеров массивов для каждой размерности. Кроме того, следует отметить, что если хотя бы одна размерность массива равна нулю, то массив будет пустым:

» A=randn(3,3,3,0)

А =

Empty array: 3-bу-3-bу-3-by-0

Как видно из данного примера, пустой массив возвращается с соответствующим комментарием.

Объединение массивов

Для создания многомерных массивов служит описанная ранее для матриц специальная функция конкатенации cat:

    cat(DIM,A,B) - возвращает результат объединения двух массивов А и В вдоль размерности DIM;

    cat(2.A.B) - возвращает массив [А.В], в котором объединены ряды (горизонтальная конкатенация);

    cat(1, А.В) - возвращает массив [А:В], в котором объединены столбцы (вертикальная конкатенация);

    B=cat(DIM.Al,A2,...) - объединяет множество входных массивов Al, A2,... вдоль размерности DIM.

Функции cat(DIM,C{:}) и cat(DIM.C.FIELD) обеспечивают соответственно конкатенацию (объединение) ячеек массива ячеек (см урок 15) или структур массива структур (см. урок 14), содержащих числовые матрицы, в единую матрицу. Ниже приводятся примеры применения функции cat:

» М1=

» М2=

М2 =

» catd.Ml.M2)

Ans =

5 б

» cat(2.Ml.M2)

ans=

1 2 5 6

3 4 7 8

» M-cat(3.Ml.M2) M(:,:.l) =

М(:,:,2) =

Работа с размерностями

Вычисление числа размерностей массива

Функция ndims(A) возвращает размерность массива А (если она больше или равна двум). Но если входной аргумент - массив Java или массив массивов Java, то независимо от размерности массива эта функция вернет 2. Следующий пример иллюстрирует применение функции ndims:

» M=rand(2:3:4:5):

» ndims(M)

Ans =

4
Вычисление размера размерности массива

Для вычисления размера каждой размерности массива используется функция size:

    М = size(A.DIM) возвращает размер размерности, указанной скаляром DIM, в виде вектора-строки размером 2. Для двумерного или одномерного массива А size(A.l) возвращает число рядов, a size (А, 2) - число столбцов;

Для N-мерных массивов А при n>2 size(A) возвращает N-мерный вектор-строку, отражающий страничную организацию массива, последняя составляющая этого вектора равна N. В векторе отсутствуют данные о единичных размерностях (тех, где расположены вектор-строка или вектор-столбец, т. е. size(A,DIM)==l). Исключение представляют N-мерные массивы Java массивов javaarray, которые возвращают размер массива самого высокого уровня.

Вообще, когда входным аргументом size является javaarray, то возвращаемое число столбцов всегда 1, а число рядов (строк) равно размеру (длине) javarray.

    Si ze(A) возвращает размер первых N размерностей массива А;

    D = size (А), для mxn матрицы А возвращает двухэлементный вектор-строку, в котором первая составляющая - число строк т, а вторая составляющая - число столбцов n;

    Size(A) возвращает число рядов и столбцов в разных выходных параметрах (выходных аргументах в терминологии MATLAB) тип.

Перестановки размерностей массивов

Если представить многомерный массив в виде страниц, то их перестановка является перестановкой размерностей массива. Для двумерного массива перестановка часто означает транспонирование - замену строк столбцами и наоборот. Следующие функции обобщают транспонирование матриц для случая многомерных массивов и обеспечивают перестановку размерностей многомерных массивов:

    Permute (A, ORDER) - переставляет размерности массива А в порядке, определяемом вектором перестановок ORDER. Вектор ORDER - одна из возможных перестановок всех целых чисел от 1 до N, где N - размерность массива А;

    ipermuteCA, ORDER) - операция, обратная permute: permute(permute(A. ORDER), ORDER)=A

Ниже приводятся примеры применения этих функций и функции size:

» А=:

» В=;

» С=;

» D=cat(3.A,B.C)

D(:,:,l) =

9 10

11 12

» size(D)

Ans =

2 2 3

» size(permute(D.))

ans=

3 2 2

»size(ipermute(D.))

Ans=

2 2 3

» ipermute(permute(D,),)

Ans(:. :,2) =

ans(:.:,3) =

9 10

11 12

Сдвиг размерностей массивов

Сдвиг размерностей реализуется функцией shiftdim:

    B=shiftdim(X,N) - сдвиг размерностей в массиве X на величину N. Если М>0, то сдвиг размерностей, расположенных справа, выполняется влево, а N первых слева размерностей сворачиваются в конец массива, т. е. движение размерностей идет по кругу против часовой стрелки. Если М<0, сдвиг выполняется вправо, причем N первых размерностей, сдвинутых вправо, замещаются единичными размерностями;

    Shiftdim(X) - возвращает массив В с тем же числом элементов, что и у массива X, но с удаленными начальными единичными размерностями. Выходной параметр NSHIFTS показывает число удаленных размерностей. Если X - скаляр, функция не изменяет X , В, NSHIFTS.

Следующий пример иллюстрирует применение функции shiftdim:

» A=randn(1.2.3,4):

» =shiftdim(A)

B(:.:.l) =

2.1707-1.01060.5077

0.05920.6145 1.6924

B(:.:,2) =

0.5913 0.3803 -0.0195

0.6436-1.0091-0.0482

B(:.:.3) =

0.0000 1.0950 0.4282

0.3179-1.87400.8956

В(:.:,4) =

0.7310 0.0403 0.5689

0.5779 0.6771 -0.2556

Удаление единичных размерностей

Функция squeeze(A) возвращает массив, в котором удалены все единичные размерности. Единичной называется размерность, в которой size(A. dim) == 1. Но если

А - одномерный или двумерный массив (матрица или вектор), то функция вернет тот же самый массив А. Следующий пример поясняет работу squeeze:

» A=randn(1.2.1.3.1):

» B=squeeze(A)

0.6145 1.6924 -0.6436

0.5077 0.5913 0.3803

Обратите внимание на то, что пятимерный массив А превращается в массив с размерностью 2 и размером 2x3.

Что нового мы узнали?

В этом уроке мы научились:

    Создавать многомерные массивы.

    Применять оператор «:» в многомерных массивах.

    Получать доступ к отдельным элементам многомерных массивов.

    Удалять размерности у многомерного массива.

    Создавать массивы, заполненные константами и случайными числами.

    Осуществлять объединение массивов.

    Вычислять число размерностей массива и определять размер каждой размерности.

    Переставлять, сдвигать и удалять единичные размерности в многомерных массивах.

Язык технических вычислений

Миллионы инженеров и ученых во всем мире используют MATLAB ® , чтобы анализировать и разработать системы и продукты, преобразовывающие наш мир. Матричный язык MATLAB является самым естественным способом в мире выразить вычислительную математику. Встроенная графика облегчает визуализацию и понимание данных. Окружение рабочего стола способствует экспериментированию, исследованиям и открытиям. Эти средства MATLAB и возможности все строго протестированы и разработаны, чтобы работать совместно.

MATLAB помогает вам воплощать свои идеи за пределами рабочего стола. Можно запустить исследования больших наборов данных и масштабировать до кластеров и облаков. Код MATLAB может быть интегрирован с другими языками, позволив вам развернуть алгоритмы и приложения в сети, предприятии и промышленных системах.

Начало работы

Изучите основы MATLAB

Основы языка

Синтаксис, индексация и обработка массива, типы данных, операторы

Импорт и анализ данных

Импорт и экспорт данных, в том числе и больших файлов; предварительная обработка данных, визуализация и исследования

Математика

Линейная алгебра, дифференцирование и интегрирование, преобразования Фурье и прочая математика

Графика

2D и 3D графики, изображения, анимация

Программирование

Скрипты, функции и классы

Создание приложений

Разработка приложений с помощью App Designer, программируемого рабочего процесса или GUIDE

Инструменты разработки программного обеспечения

Отладка и тестирование, организация крупных проектов, интеграция с системой контроля версий, упаковка тулбоксов

Транскрипт

1 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р. Е. АЛЕКСЕЕВА» КАФЕДРА «КОМПЬЮТЕРНЫЕ ТЕХНОЛОГИИ В ПРОЕКТИРОВАНИИ И ПРОИЗВОДСТВЕ» РАБОТА С МАССИВАМИ В СЕДЕ MATLAB ЛАБОРАТОРНАЯ РАБОТА по дисциплине «Математический аппарат динамических систем» для магистрантов очной формы обучения по направлениям подготовки:.. «Конструирование и технология радиоэлектронных средств»,.. «Инфокоммуникационные технологии и системы связи»,.. «Радиотехника» (профиль подготовки «Техника СВЧ и антенны»), по дисциплине «Модели динамических систем для магистрантов очной формы обучения по направлению подготовки 9.. «Информационные системы и технологии» Нижний Новгород

3 Составитель Кукушкин А.В. УДК 68 Работа с массивами в среде MATLAB: лаб. работа по дисциплине «Математический аппарат динамических систем» для магистрантов очной формы обучения по направлениям подготовки:.. «Конструирование и технология радиоэлектронных средств»,.. «Инфокоммуникационные технологии и системы связи»,.. «Радиотехника» (профиль подготовки «Техника СВЧ и антенны»), по дисциплине «Модели динамических систем для магистрантов очной формы обучения по направлению подготовки 9.. «Информационные системы и технологии», Нижегородский Государственный технический университет им. Р. Е. Алексеева, 7 с. Нижегородский государственный технический университет им. Р.Е. Алексеева, Кукушкин А. В.,

5 . Цель работы Целью работы является приобретение навыков работы с массивами в программной среде MatLab, т.к. все данные в MatLab представляются и хранятся в виде массивов. В работе изучаются операции и вычисления с векторами (одномерные массивы) и матрицами (двумерные массивы).. Краткие сведения из теории Массив с присвоенным ему именем упорядоченная, пронумерованная совокупность однородных данных [, ]. Массивы различаются по числу измерений: одномерные, двумерные и многомерные. Размером массива называют число элементов по каждому измерению. Доступ к элементам осуществляется с помощью индекса (нумерация элементов начинается с индекса, равного единице). Если вектор (векторстрока или вектор-столбец), матица или тензор являются математическими понятиями (объектами), то одномерные, двумерные и многомерные массивы это способы хранения или представления этих объектов в компьютере.. Задания к работе и порядок ее выполнения Работа выполняется в командной строке (в консоли) пакета MatLab по инструкциям, приведенным в описании. Контрольные задания следуют по тексту описания.. Одномерные массивы. Умножение векторов Векторы можно перемножать между собой скалярно, векторно или образовывать так называемое «внешнее произведение». В первом случае образуется скаляр (число), во втором вектор и в третьем матрица. Скалярное произведение двух векторов, хранящихся в массивах a, b с длиной N, определяется формулой N a b a b k k. Поэтому используется поэлементное перемножение массивов, т. е. если

6 a...7 b то в командной строке нужно набрать: >> a=[.; -.;.7]; >> b=[.; 6.; -.9]; >> s=sum(a.*b) Для вычисления модуля (длины) вектора a набираем команду >> d=sqrt(sum(a.*a)) Векторное произведение определено только в трехмерном пространстве и его результатом будет также трехмерный вектор. Для этого в MATLAB имеется команда cross. >> a=[.; -.;.7]; >> b=[.; 6.; -.9]; >> c=cross(a,b) Задание: для тренировки вычислите a b b a. Вы должны получить трехмерный вектор с тремя нулевыми компонентами. Смешанное произведение трех векторов a b c дает объем параллелепипеда, построенного на этих векторах как на гранях. Задание: задайте три соответствующих векторных массива по своему усмотрению и используя команду >> V=abs(sum(a.*cross(b,c))) вычислите значение соответствующего объема. «Внешним» произведением векторов с длинами N и M является матрица размера M N, где вычисление элементов проводится по правилам матричного умножения, для чего служит команда >> c=a*b «Звездочка» служит оператором матричного умножения, а «апостроф» транспонирует матрицу b. Задание: проделайте самостоятельно соответствующие упражнения с векторами a и b различной длины.,

7 Используйте далее команду whos для просмотра переменных рабочей среды... Двумерные массивы. Матрицы.... Ввод матриц. Простейшие операции. Матрицу A можно рассматривать как вектор-строку из трех элементов, каждый из которых является вектор-столбцом длиной два, либо как вектор-столбец из двух элементов, каждый из которых суть вектор-строка длиной три. Следовательно, для ее введения можно использовать де команды >> A=[[;] [;] [-;]] >> A=[ -; ] Другой способ набора состоит в следующем. Начните набирать в командной строке (используя для перехода к следующей строке клавишу «Enter»), >> B=[ 7 - ] нажав после замыкающей квадратной скобки клавишу «Enter», вы получите результат: B 7 Сложение и вычитание матриц происходит поэлементно с использованием обычных алгебраических команд, поэтому нужно следить за совпадением размерностей матриц. Наберите сначала матрицу С такой же размерности, что и матрица А, и сложите их, проверив полученный результат.

8 6 >> C=[[;] [-;] ]; >> S=A+C Для умножения матриц предназначена «звездочка» >> P=C*B P = Умножать матрицу на число можно также, используя «звездочку». >> P=A* (или P=*A) Транспонирование матрицы, как и вектора, производится при помощи команды:., символ означает комплексное сопряжение. Для вещественных матриц эти операции приводят к одинаковым результатам. >> B" ans = >> B." ans = Сопряжение и транспонирование матриц, содержащих комплексные числа, приведут к созданию разных матриц. >> K=[-i,+i;-i,-9i]

9 K =. -.i. +.i. -.i. - 9.i >> K" ans =. +.i. +.i. -.i. + 9.i >> K." ans =. -.i. -.i. +.i. - 9.i Возведение квадратной матрицы в целую степень производится при помощи оператора ^. >> B=B^ B = Задание: найдите значение следующего выражения A C B A C T где верхний индекс Т означает транспонирование. Поскольку вектор-столбец или вектор-строка в MATLAB являются матрицами, у которых один из размеров равен единице, то вышеописанные операции применимы и к перемножению матриц с векторами. Задание: вычислите выражение, 7

10 Решение систем линейных алгебраических уравнений При помощи алгебраических операций с матрицей и вектор-столбцом в MATLAB можно решать системы линейных алгебраических уравнений. Решим систему с тремя неизвестными.x.x.x.; x.x.x..9; ().9x.7x.6x.. Задание: введите матрицу коэффициентов системы () в массив А, для вектора коэффициентов правой части системы используйте массив b. Решите систему при помощи символа \ 8 >> x=a\b Проверьте правильность результата, умножив А на x.... Считывание и запись данных Часто требуется найти решение системы, состоящей из большого числа линейных уравнений, причем матрица и вектор коэффициентов системы хранятся в файлах. Перед нами стоит задача решить систему, матрица и правая часть которой хранятся в текстовых файлах matr.txt, rside.txt, и записать результат в файл sol.txt. Матрица записана в файле построчно, элементы в строке отделены пробелом, вектор правой части записан в столбик. Задание: подготовьте файлы с данными системы () в стандартной программе Windows Блокнот (NotePad). Скопируйте файлы matr.txt, rside.txt в подкаталог work основного каталога MATLAB. Для считывания из файла используйте команду load,

11 для записи save. Формат вызова этих команд с выходными аргументами: >>A=load(matr.txt); >>b=load(rside.txt); >>x=a\b; >>save sol.txt x ascii Параметр ascii означает запись в текстовом формате. После выполнения этих команд в каталоге work создается файл sol.txt, в котором в столбик записано решение системы. Посмотреть содержимое файла можно, используя любой текстовый редактор. Запись с двоичной точностью требует команды save sol.txt x ascii double. Аналогично можно записать и содержимое массива матрицы А в текстовый файл. Командой >> save sol.txt A ascii массив матрицы A записывается в файл matra.txt.... Блочные матрицы. Часто в приложениях возникают матрицы, составленные из непересекающихся блочных матриц. Соответствующие размеры блоков должны совпадать. Введите матрицы A B C D и создайте из них блочную матрицу K A C B D >> A=[- ;- ]; >> B=[ ; ]; >> C=[ -;- ]; 9

12 >> D=; >> K= K = Составьте блочную матрицу где a S K, b. S a b Заполнение матриц при помощи индексации и создание матриц специального вида Сгенерируем матрицу Генерация матрицы осуществляется в три этапа. T. Создание массива Т размером пять на пять, состоящего из нулей.. Заполнение первой строки единицами.. Заполнение части последней строки минус единицами до последнего элемента..

13 Доступ к элементам матриц осуществляется при помощи аргумента, состоящего из двух индексов номеров строки и столбца. Например, >>A(,) вызывает элемент матрицы А, стоящий во второй строке и третьем столбце. Поэтому команды для генерации матрицы Т будут иметь вид >> A(:,:)= A = >> A(,:)= A = >> A(end,:end)=- A =

14 - - - Создание некоторых специальных матриц в осуществляется при помощи встроенных функций. MATLAB Заполнение прямоугольной матрицы нулями проводится обращением к встроенной функции zeros, аргументами которой является число строк и столбцов матрицы. >> A=zeros(,6) A = >> A=zeros() A = Единичная матрица генерируется функцией eye. Примеры: >> I=eye() I = >> I=eye(,8) I =

15 Матрица, состоящая из одних единиц, вызывается функцией ones: >> E=ones(,) E = Функция rand вызывает матрицу, заполненную случайным образом числами от нуля до единицы, функция randn создает матрицу чисел, распределенных по нормальному закону. >> R=rand(,) R = >> RN=randn(8) RN =

16 Функция diag формирует диагональную матрицу из векторстолбца или вектор-строки, располагая их элементы по диагонали. Для заполнения не главной, а побочной диагонали предусмотрена возможность вызова этой функции с двумя аргументами. Примеры: >> d=; >> D=diag(d) D = >> d=[;]; >> D=diag(d,) D = >> D=diag(d,-)

17 D = Подумайте, почему в двух последних случаях не указывается размер матрицы? Функция diag служит и для выделения диагонали матрицы в вектор, например >> A=[ ; ; 7]; >> d=diag(a) d = 7 Задание: заполните и запишите в файлы следующие матрицы.. G M

18 ..6. Поэлементные операции с матрицами Поэлементные операции с матрицами проводятся обычным образом, т.е. с использованием «точки» перед соответствующим оператором. Например, умножение первой матрицы на вторую (разумеется, того же размера!) производится оператором.*, деление элементов первой матрицы на соответствующие элементы второй производится с помощью оператора./, наоборот, деление элементов второй матрицы на элементы первой проводится оператором.\. Введите две матрицы A 9 B 7 8. Проделайте с ними операции: >>C=A.*B >>R=A./B >>R=A.\B >>P=A.^ >>PB=A.^B () Выведите последний результат в «длинном» формате, используя команду format long >> format long >>PB Обратите внимание, что повторного вычисления матрицы PB не потребовалось, так как все вычисления всегда ведутся с двойной точностью.. Контрольные вопросы.. Объясните, почему в отличие от операций сложения и вычитания можно и нужно перемножать матрицы разной 6

19 размерности. Какие параметры размерностей перемножаемых матриц должны совпадать, чтобы избежать ошибки?.. Объясните, почему операцию «возведение в степень» можно проводить только с квадратными матрицами и целыми степенями?.. Что сделал MATLAB в примере ()?. Список литературы) Дьяконов В.П. MATLAB 6/6./6. + Simulink /. Основы применения. Полное руководство пользователя, / В.П. Дьяконов. М.: СОЛОН-Пресс,. 768с.) Мэтьюз Д. Г. Численные методы. Использование MATLAB: [пер. с англ.], / Д. Г. Мэтьюз, К. Д. Финк. М.: Изд. дом «Вильямс»,. 7с.) Теория аналитических функций. Аспекты приложений, / Л.В. Широков и др. Арзамас, АГПИ, 7. 87с.) Свешников А.Г. Теория функций комплексного переменного, / А.Г. Свешников, А.Н., Тихонов М.: Наука, 979.) Бейтмен Г. Высшие трансцендентные функции. Т., / Г. Бейтмен, А. Эрдейи. M.: Наука,


Лабораторная работа 3 Работа с матрицами в MatLab Цель работы: выработать навыки работы с матрицами в MatLab. Требуемое оборудование и программное обеспечение: ПЭВМ класса Pentium или выше, операционная

Лабораторная работа Работа с векторами в MatLab Цель работы: выработать навыки работы с векторами в MatLab. Требуемое оборудование и программное обеспечение: ПЭВМ класса Pentium или выше, операционная

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.

МАТРИЦЫ И ДЕЙСТВИЯ НАД НИМИ ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ 11 Умножение матриц 12 Транспонирование матриц 13 Обратная матрица 14 Сложение матриц 15 Вычисление определителей Обратите внимание на особенность

Векторы и матрицы При работе в MATLAB необходимо учитывать две существенные особенности реализации арифметических вычислений в этой системе. Вопервых, в MATLAB все скалярные переменные трактуются, как

1 Лабораторная работа 1. Программирование в MatLab Первое знакомство с MATLAB Для запуска MATLAB Вам необходимо найти на рабочем столе ярлык этой программы и запустить его на выполнение, при этом отроется

Министерство образования и науки российской федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ

{ определение типы матриц сложение матриц умножение матриц свойства операции умножения умножение матрицы на число полином от матриц транспонирование матрицы примеры } Матрицей называется набор m элементов

Общие сведения MATLAB - это высокоэффективный язык инженерных и научных вычислений. Он поддерживает математические вычисления визуализацию графики и программирование с использованием легко осваиваемого

Тема3. Операциис векторамии матрицами Под вектором в MatLAB понимается одномерный массив чисел, а под матрицей двумерный массив. При этом по умолчанию предполагается, что любая заданная переменная является

Ãëàâà 7 Ëèíåéíàÿ àëãåáðà Задачи линейной алгебры, решаемые в Mth, можно условно разделить на два класса. Первый это простейшие матричные операции, которые сводятся к определенным арифметическим действиям

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.1 Аннотация Матрицы. Виды матриц. Элементарные преобразования матриц. Линейные операции над матрицами (сравнение, сложение,

Лабораторная работа РЕШЕНИЕ ЗАДАЧ ЛИНЕЙНОЙ АЛГЕБРЫ Список способ структурирования данных. Элементами списка могут быть любые выражения Mathematca, в том числе и другие списки. С клавиатуры списки вводятся

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ ПРЕЗЕНТАЦИИ Лекций ч. Практических занятий ч. Всего ч. Итоговый контроль экзамен. Проф., д.ф.-.м.н. Пантелеев Андрей Владимирович ЛИТЕРАТУРА. Беклемишев Д.В.

Введение в линейную алгебру Матрицы. Определение. Таблица m n чисел вида m m n n mn состоящая из m строк и n столбцов называется матрицей. Элементы матрицы нумеруются аналогично элементам определителя

ЛАБОРАТОРНАЯ РАБОТА «ПРИНЯТИЕ РЕШЕНИЙ В СРЕДЕ SCILAB». Введение Sclb - это система компьютерной математики, которая предназначена выполнения инженерных и научных вычислений, включающих в себя задачи принятия

Линейная алгебра заочное обучение тема МАТРИЦЫ) Основные определения теории матриц Определение Матрицей размерностью называется прямоугольная таблица чисел состоящая из строк и столбцов Эта таблица обычно

Лекция 3 Матричные вычисления в MathCAD Символьный процессор MathCAD позволяет выполнять самые разные матричные вычисления. При этом к матричным вычислениям можно применять рассмотренную ранее команду

Тема. МАТРИЦЫ И ОПРЕДЕЛИТЕЛИ МАТРИЦЕЙ размера m x n называется прямоугольная таблица чисел, содержащая m строк и n столбцов. Обозначается:. m n Числа, составляющие матрицу, называются элементами матрицы.

Лекция 1 Работа с матрицами. 1. Основные понятия. Определение. Матрицей размерности чисел, содержащая строк и столбцов. называется таблица пронумерованных Исходя из такого определения матрицы, можно сделать

Матрицы и действия над ними ы Матрицей размера называется прямоугольная таблица элементов некоторого множества (например чисел или функций) имеющая строк и столбцов Элементы из которых составлена а называются

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» Российский государственный технологический университет им. К.Э. Циолковского

Работа в командном окне Задание 1 Выполните операцию why в командной строке 10 раз. Скопируйте результат исполнения команды в Word, переведите предложения на русский язык. Сравните ваш результат с результатом

УДК 519.85 ББК 22.18 Я49 Электронный учебно-методический комплекс по дисциплине «Математическое программное обеспечение» подготовлен в рамках инновационной образовательной программы «Инновационно-образовательный

Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция

Глава I. Элементы линейной алгебры Линейная алгебра часть алгебры, изучающая линейные пространства и подпространства, линейные операторы, линейные, билинейные и квадратичные функции на линейных пространствах.

) Матрицы, основные определения) Элементарная алгебра матриц) Определители и их свойства 4) Обратные матрицы) Матрицы, основные определения I Определения Совокупность элементов, расположенных в виде

НИИСХ Северо-Востока, -8 с ЭЛЕМЕНТЫ МАТРИЧНОЙ АЛГЕБРЫ Матричная алгебра - это система обозначений для упрощения описаний множества чисел и символов Матричная алгебра имеет такое же отношение к скалярной

Лекция 2 Действия с матрицами Основные определения Матрицей размера n называется совокупность n чисел, записанных в виде прямоугольной таблицы, состоящей из n строк и столбцов и заключенной в скобки: a11

ЛЕКЦИЯ 4. Алгоритмы обработки двумерных массивов. Цель лекции: Знакомство с понятием матрицы, как двумерного массива. Приобретение навыков построения алгоритмов предназначенных для обрабо тки ма триц.

Основы программирования Выбор варианта задания Номер варианта задания соответствует порядковому номеру студента в группе. Если порядковый номер больше, чем количество вариантов, нумерацию считать циклической.

Математика (БкПл-100) М.П. Харламов 2011/2012 учебный год, 1-й семестр Лекция 3. Элементы линейной алгебры (матрицы, определители, системы линейных уравнений и формулы Крамера) 1 Тема 1: Матрицы 1.1. Понятие

ОГЛАВЛЕНИЕ Предисловие......................................... 3 Глава1 Элементы линейной алгебры............................ 5 1.1. Матрицы и определители........................... 5 1.2. Линейные пространства............................

Государственное образовательное учреждение высшего профессионального образования «Московский авиационный институт (национальный исследовательский университет)» Кафедра «Высшая математика» ЛИНЕЙНАЯ АЛГЕБРА

05 setgray0 05 setgray Лекция МАТРИЦЫ Определение матрицы Дадим определение матрицы размера m n Определение Матрицей размера m n над множеством X называется упорядоченный набор из m n элементов этого множества,

Тема: Решение систем линейных уравнений, работа с матрицами Цель работы: Изучение возможностей пакета Ms Ecel при решении задач линейной алгебры. Приобретение навыков решения систем линейных алгебраических

Гл.5. MATLAB 5.1. Введение MATLAB - МATrix LABoratory - язык и среда программирования для разработки алгоритмов, анализа данных, визуализации и численных расчетов. Компания Mathworks производит около 100

ЛАБОРАТОРНАЯ РАБОТА Тема: Решение систем линейных уравнений работа с матрицами Цель работы: Изучение возможностей пакета Ms Ecel при решении задач линейной алгебры. Приобретение навыков решения систем

МАТРИЦЫ И ОПРЕДЕЛИТЕЛИ МАТРИЦ Матрицы При решении ряда прикладных задач используются специальные математические выражения, называемые матрицами О п р е д е л е н и е Матрицей размерности m n называется

Задания учебную практику Вариант 1 Написать программу, которая считывает из текстового файла три предложения и выводит их в обратном порядке. Описать класс, реализующий стек. Написать программу, использующую

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю) Общие сведения 1 Кафедра Математики, физики и информационных технологий 2 Направление подготовки 010302

Матрицы и определители Линейная алгебра Определение матрицы Числовой матрицей размера mxn называется совокупность чисел, расположенных в виде таблицы, содержащей m строк и n столбцов 11 21... m1 12......

Лекция 1: Определители второго и третьего порядков Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Мы начинаем

66 ГЛАВА 6 ЛИНЕЙНЫЕ ПРОСТРАНСТВА Определение линейного пространства В гл 5 n-мерное векторное пространство было определено как упорядоченная система n чисел Для n-мерных векторов были введены операции

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра М и ММЭ 2. Направление подготовки 01.03.02 (010400.62) Прикладная математика

Лекция ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН -МЕРНЫЙ СЛУЧАЙНЫЙ ВЕКТОР ЦЕЛЬ ЛЕКЦИИ: определить числовые характеристики системы двух случайных величин: начальные и центральные моменты ковариацию

МОДУЛЬ Векторная алгебра и аналитическая геометрия Элементы линейной алгебры Леция Понятие матрицы и определителя Свойства определителей Аннотация: В лекции указывается на применение определителей для

Лекции подготовлены доц Мусиной МВ Векторы Линейные операции над векторами Определение Направленный отрезок (или что то же упорядоченную пару точек) мы будем называть вектором Обозначение: AB Нулевой вектор

ЛИНЕЙНАЯ АЛГЕБРА Матрицы и определители. Системы линейных алгебраических уравнений. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю. Широкое использование математических методов в современном

12 Практическое занятие 2 Решение систем линейных алгебраических уравнений прямыми методами Продолжительность работы 2 часа Цель работы: закрепление знаний о методе Гаусса и Жордана (Гаусса Жордана), о

Линейная алгебра Лекция 7 Векторы Введение В математике есть два рода величин скаляры и векторы Скаляр это число, а вектор интуитивно понимается как объект, имеющий величину и направление Векторное исчисление

Решение задачи линейной алгебры в электронных таблицах Пример.9. Решим методом обратной матрицы следующую систему уравнений: - -. В этом случае матрица коэффициентов А и вектор свободных коэффициентов

ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ, ÀÏ Êðèùåíêî ÀÍÀËÈÒÈ

Лабораторная работа 3 Задание Требуется реализовать программу, выполняющую действия над массивами. При выполнении части 1 допускается использование массивов статического размера. При выполнении части 2

(4 часа) Численное решение систем линейных алгебраических уравнений Цель работы: получение практических навыков построения алгоритмов решения систем линейных алгебраических уравнений, программной реализации

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЗАНЯТИЕ МАТРИЦЫ И ДЕЙСТВИЯ НАД НИМИ Дать определение матрицы Классификация матриц по размерам Что такое нулевая и единичная матрицы? При каких условиях матрицы считаются равными?

Лекция 1. Алгебра матриц. Прямоугольные и квадратные матрицы. Треугольные и диагональные матрицы. Транспонирование матриц. Сложение матриц, умножение матрицы на число, умножение матриц. Основные свойства

Тема: Двумерные массивы Лабораторная работа 6 Цель: Изучение способов задания двумерных массивов в языке C#. Приобретение навыков составления и отладки программ с использованием двумерных массивов. 1 Теоретический

1) Найти все дополнительные миноры определителя 1 9 11 0 0 0 56 18 2. Пусть дана квадратная матрица порядка n. Дополнительным минором a матрицы называется определитель на единицу меньшего M ij элемента

Задания к лабораторной работе по MathCAD. Особенности работы средствами MathCAD I). Изучите методические указания к работе средствами MathCAD II). Средствами MathCAD согласно вашему варианту выполните

Линейная алгебра. Матрицы (вводные определения и примеры) Предуведомление: ниже лишь краткий конспект, не предназначенный для замены имеющихся учебных пособий. Под матрицей в математике понимается таблица,

Тема: Цель: Время: Задание: Литература: Практическая работа 0. Использование абсолютных и относительных адресов ячеек в формулах, решение уравнений и систем линейных алгебраических уравнений с помощью

Лекция 8 Глава Векторная алгебра Векторы Величины, которые определяются только своим числовым значением, называются скалярными Примерами скалярных величин: длина, площадь, объѐм, температура, работа, масса

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Курганский государственный университет» Кафедра

Й семестр. РАЗДЕЛ. Линейная алгебра. Основные определения. Определение. Матрицей размера mn где m- число строк n- число столбцов называется таблица чисел расположенных в определенном порядке. Эти числа

Свойства собственных векторов линейного оператора. 1. Если λ 1,..., λ k (k n) различные собственные числа оператора ϕ, тогда соответствующие собственные векторы x 1,..., x k линейно независимы. Доказательство:

Тема 2-16: Матрица Грама и определитель Грама А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для

Решение типовых задач к разделу «Матрицы» Вычислить сумму матриц и Р е ш е н и е 8 8 9 + + + + Вычислить произведение матрицы на число Р е ш е н и е Вычислить произведение матриц и Р е ш е н и е 8 Вычислить

РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ В ТАБЛИЧНОМ ПРОЦЕССОРЕ MICROSOFT EXCEL. РАСЧЕТНО-ГРАФИЧЕСКОЕ ЗАДАНИЕ Задача определения решения системы имеет давнюю традицию. Существует много методов

Язык технических вычислений

Миллионы инженеров и ученых во всем мире используют MATLAB ® , чтобы анализировать и разработать системы и продукты, преобразовывающие наш мир. Матричный язык MATLAB является самым естественным способом в мире выразить вычислительную математику. Встроенная графика облегчает визуализацию и понимание данных. Окружение рабочего стола способствует экспериментированию, исследованиям и открытиям. Эти средства MATLAB и возможности все строго протестированы и разработаны, чтобы работать совместно.

MATLAB помогает вам воплощать свои идеи за пределами рабочего стола. Можно запустить исследования больших наборов данных и масштабировать до кластеров и облаков. Код MATLAB может быть интегрирован с другими языками, позволив вам развернуть алгоритмы и приложения в сети, предприятии и промышленных системах.

Начало работы

Изучите основы MATLAB

Основы языка

Синтаксис, индексация и обработка массива, типы данных, операторы

Импорт и анализ данных

Импорт и экспорт данных, в том числе и больших файлов; предварительная обработка данных, визуализация и исследования

Математика

Линейная алгебра, дифференцирование и интегрирование, преобразования Фурье и прочая математика

Графика

2D и 3D графики, изображения, анимация

Программирование

Скрипты, функции и классы

Создание приложений

Разработка приложений с помощью App Designer, программируемого рабочего процесса или GUIDE

Инструменты разработки программного обеспечения

Отладка и тестирование, организация крупных проектов, интеграция с системой контроля версий, упаковка тулбоксов

Элементы одного и того же класса часто могут быть объединены в массивы (с несколькими редкими исключениями, например, с помощью функций). Числовые скаляры, по умолчанию класса double , могут храниться в матрице.

>> A = A = 1.0e+04 * 0.0001 -0.0002 0.0003 0.0001 1.5625 0.0003 Inf Inf NaN -Inf

Символы, которые имеют класс char в MATLAB, также могут храниться в массиве с использованием аналогичного синтаксиса. Такой массив похож на строку во многих других языках программирования.

>> s = ["MATLAB ","is ","fun"] s = MATLAB is fun

Обратите внимание, что, несмотря на то, что оба они используют скобки [ и ] , классы результатов отличаются. Поэтому операции, которые могут быть сделаны на них, также различны.

>> whos Name Size Bytes Class Attributes A 2x5 80 double s 1x13 26 char

На самом деле массив s не является массивом строк "MATLAB " , "is " и "fun" , это всего лишь одна строка - массив из 13 символов. Вы получите те же результаты, если бы они были определены одним из следующих:

>> s = ["MAT","LAB ","is f","u","n"]; >> s = ["M","A","T","L","A","B," ","i","s"," ","f","u","n"];

Обычный вектор MATLAB не позволяет хранить сочетание переменных разных классов или несколько разных строк. Здесь массив cell пригодится. Это массив ячеек, каждый из которых может содержать некоторый объект MATLAB, класс которого может быть различным в каждой ячейке, если это необходимо. Используйте фигурные скобки { и } вокруг элементов для хранения в массиве ячеек.

>> C = {A; s} C = "MATLAB is fun" >> whos C Name Size Bytes Class Attributes C 2x1 330 cell

Стандартные объекты MATLAB любых классов могут храниться вместе в массиве ячеек. Обратите внимание, что массивы ячеек требуют больше памяти для хранения их содержимого.

Доступ к содержимому ячейки осуществляется с помощью фигурных скобок { и } .

>> C{1} ans = 1.0e+04 * 0.0001 -0.0002 0.0003 0.0001 1.5625 0.0003 Inf Inf NaN -Inf

Заметим, что C(1) отличается от C{1} . Принимая во внимание, что последний возвращает содержимое ячейки (и имеет пример с double примером), первый возвращает массив ячеек, который является подматрицей C Точно так же, если D было массивом из 10 на 5 ячеек, тогда D(4:8,1:3) вернет подматрицу D , размер которой равен 5 на 3, а класс - cell . И синтаксис C{1:2} не имеет одного возвращенного объекта, но rater он возвращает 2 разных объекта (аналогично функции MATLAB с несколькими возвращаемыми значениями):

>> = C{1:2} x = 1 -2 3.14 0.8 15625 3.14159265358979 Inf Inf NaN -Inf y = MATLAB is fun

2024 samgupsnn.ru. Samgupsnn - Немного о компьютере и современных гаджетах.